‘EDERA\

Performant o

Isolation for
Agentic AI O

A Comparative Analysis Proving Edera’s Hardened
Runtime is Both More Secure and Faster than
Docker for Al Workloads



Performant Isolation for Agentic AI

Executive Summary

Al agents can be a powerful tool for handling complex,
multi-stage processes. But what happens when the
agent misbehaves? In this paper we propose combining
design patterns for multi-stage Al agents with Edera to
achieve strong security guarantees with minimal limits to
the agent’s capabilities. The design patterns provide
best practices for how agents interact, and Edera
provides strong isolation. So each single-purpose agent
can be in its own isolated environment, then securely
combined into a powerful application.

We create an example architecture and implementation
to demonstrate that running agents in Edera can actually
be faster than running them in Docker.

Executive Summary




Performant Isolation for Agentic AI

Introduction

Al agents have proven to be useful at a wide
range of tasks from triaging email to searching
the internet to handling customer inquiries. But
running agents in traditional, shared-kernel
container environments comes with risks. If the
agent is able to access your filesystem, what if
exfiltrates APl keys from the host environment? If
it's able to read logs to respond to customer
questions, can it also read sensitive information
and return that to the customer?

We want to allow agents to have enough
autonomy to complete complex tasks, but prevent
them from wreaking havoc on our systems. A lot
of work has been done to make agents more
accurate through carefully crafted prompts and
splitting large tasks into smaller ones. And
researchers have come up with secure design
patterns to combine these agents. These design
patterns use set interfaces or careful control flow
to ensure that a prompt injection can’t spread
from one agent to the entire system. What we
focus on in this work is where these agents are
actually running.

e

Introduction

o

When agents are run directly on your machine
they can get access to everything else running
on your machine, so we propose isolating agents
with Edera. These agents, which can be split into
separate agents for each task following existing
best practices, can run in isolated Edera zones.
Input and output can be passed between the
agents, but each agent only has access to data
that’s directly passed in. If the agent has to
operate on files, it will operate only on files
passed into the zone, and any changes will be
made only after the files are passed back as
output. This use of Edera can be combined with
agent design patterns designed for security, like
using the operator pattern and pre-defining steps
for each agent.

In this paper, we look at the feasibility of running
complex agentic systems in Edera. We create a
sample architecture that uses tools like model
context protocol (MCP) and retrieval augmented
generation (RAG) with a supervisor model to
determine if agents can be run in isolated zones,
how hard this is to set up, and what the
performance impact is. We run the agents in both
Docker and Edera to compare the performance
and usability of each setup.



Performant Isolation for Agentic AI

Background

Background

~

o

o

T e ) i ~o

Edera

Edera is a hardened runtime for containers that provides isolation to workloads
through the use of zones. Zones are similar to the guest operating system in a
MicroVM, providing a minimal workspace for applications. Zones are managed by
Edera’s Xen-based type 1 hypervisor. By running workloads in zones, they have a
reduced attack surface and no shared operating system with other workloads on
the system. Edera acts as a Kubernetes runtime, making it compatible with
existing Kubernetes applications. This compatibility allows existing applications to
gain isolation without sacrificing their existing Kubernetes-based orchestration or
CI/CD pipelines. For more information about Edera, see our paper.

o S S S S S S S S S S S S S i —

Al Agent Design Patterns

A lot of work has been done on the security of Al agents. We especially want to
call out work on secure design patterns for agents that this work built on.
IsolateGPT proposes that Al agents communicate through set interfaces. This
allows for user screening of inter-app communication and setting the context for
each agent. Beurer-Kellner et. al. propose a series of design patterns for Al agents
that reduce the risk of prompt injection. These design patterns limit the abilities of
agents, which limits these patterns to single-purpose agents where the designer
has some knowledge of what the agent will need access to. In this work we utilize
the supervisor pattern, with a deterministic supervisor inspired by these design
patterns from the literature.

The agent design patterns discussed provide application-level security. Our work
adds a crucial, missing layer: infrastructure-level isolation. Edera ensures that
even if an application-level control fails (e.g., via a novel zero-day prompt
injection), the blast radius is contained to a single, powerless zone.

N

N
AY

N e e e e e e e e e e e e e e e e e e e e

O e — —————————————————————————————————————


https://arxiv.org/pdf/2501.04580
https://arxiv.org/pdf/2501.04580
https://arxiv.org/pdf/2501.04580
http://arxiv.org/abs/2403.04960
http://arxiv.org/abs/2506.08837
http://arxiv.org/abs/2506.08837

Performant Isolation for Agentic AI

Architecture

We designed a sample agent architecture to put
the idea of agent isolation into practice. The goal
is to see how isolation works in practice, and to
observe the performance for different types of Al
operations including the use of knowledge bases
and MCP servers. Each agent in this architecture
can be put in its own Docker container or Edera
zone, with networking enabling communication
between the agents. The architecture is
summarized in the diagram below.

The agents in this architecture write a report in
answer to a question about container isolation.
Each agent is given a small task, with the
supervisor orchestrating calls to the other agents.
For this experiment, we used a deterministic, non-
Al supervisor. The supervisor passes inputs
between the agents, but does not read this data
itself, meaning it is safe from prompt injection by
the other agents. While this supervisor model
demonstrates how isolated agents can be
combined with other agentic best practices, the
isolation mechanisms would work similarly with an
agentic supervisor or other agent architecture.

Architecture

o

The supervisor first gathers data about CVEs
related to the input question from an MCP server.
It calls a CVE question agent which generates a
relevant question about CVEs, then passes this
question to a CVE agent. The CVE agent
responds to the question with access to a search
engine MCP server. This MCP server is able to
read the top Google results for a query. The CVE
agent creates an answer to the question and
sends this back to the supervisor.

The supervisor then looks for relevant
information from a knowledge base. This
knowledge base is a RAG database that uses
ChromaDB and is seeded with information about
container isolation from Edera’s blog. Similar to
the above, the supervisor first asks the blog
question agent for a relevant query for the
knowledge base, then asks the RAG agent for a
response to that query. This response is sent
back to the supervisor.

Finally, the answers from both the CVE agent
and the RAG agent are sent to a report writing
agent to generate the final report.



Impl tati
Performant Isolation for Agentic AI

l

Supervisor
(Deterministic)

CVE GVE Agent Edera Blog Edera Blog Report
Question Agent 9 Question Agent Rag Agent Writing Agent

AR N
{ RAG Database )
N %

MCP Server

Pseudocode:
Edera Zone Q1 = CVE_question_agent(question)
Keg o R1= CVE_agent(Q1)
: Q2 = Edera_blog_question_agent(question)
Arrow Color = Identical Content R2 = Edera_blog_RAG_agent(Q2)

R3 = report_writing_agent(question, R1, R2)

Implementation

We implemented the above architecture in both Docker and Edera to compare the
performance and security of each. The Docker implementation uses a Docker Compose file to
build and deploy all of the agents. The Edera implementation translates this Compose file into
Kubernetes yaml with the Edera runtime class. Docker and Kubernetes (with the Edera cri)
provide the networking for the agents to communicate. The source code for both
implementations is available here.

The agents are written in python using LangGraph and use the OpenAl API. They are packaged
as Docker containers in order to run in both implementations. In Docker each agent is a Docker
container, and in Edera each agent is a Kubernetes container inside a zone.



https://github.com/edera-dev/Research/tree/main
https://github.com/edera-dev/Research/tree/main

Performant Isolation for Agentic AI

Security
Validation

Next, let’s compare the security between the
Docker and Edera setups, as well as comparing to
a baseline of running all agents in the same
application. But before we do that, let’s look at our
threat model and what we’re hoping to gain from
this security,

We assume that an attacker can perform prompt
injection in the initial question sent to our system.
Specifically, they can input arbitrary text into this
input. With this access, the attacker will try to
perform a malicious action through the agent such
as alter the file system, alter permissions, or
return malicious output. Their end goal is to
compromise the host system or alter agent
resources like the RAG database.

We consider non-malicious agent actions to be
out of scope. For example if the attacker gets the
agent to write a report about dogs, this is not
considered a successful attack.

So considering this goal, how do our different
agent environments compare?

Without any containerization, all agents are
running on the host system directly. So a
malicious agent, or one under the influence of a
prompt injection, could directly impact the system.

Security Validation

o

For example, the agent could add malicious
data to the RAG database or exfiltrate
sensitive data like OpenAl API keys.

By putting agents in separate Docker
containers, we run them inside containers
rather than directly on the host system. These
containers prevent a malicious agent from
viewing processes running in other agents or
the host system, and provide some resource
separation. But containers still share a host file
system, and we have seen that all it takes is a
single vulnerability in the Linux kernel to allow
containers to access data in other containers
or on the host machine.

Adding Edera zones around containers adds a
security boundary to the containers. Now each
agent has its own operating system, and
cannot access any data from other zones or
the host system. This means that even if a
prompt injection convinces an agent to behave
badly, it can only compromise its own zone
rather than the entire system.

So in summary, containerizing agents provides
some logical separation between them and the
host system. Adding Edera turns this into a
security boundary.



Performant Isolation for Agentic AI

@ Docker Edera
30
25
20
15
10
5
. _ . m m
@ X Q X O < & ' &
. Q 8 S & < @ S Q Q
PO A e N 5 8 &
& N R < R Q & & &
¢ & N Y 2 W W® > 5 3
S < © & & ¢
& QY A\ < (e
o ¥ &
D & A\

Benchmarks

Next, we compare the performance and usability of agents in Docker and Edera.

Performance

We send the supervisor the question “Tell me about container escape vulnerabilities from the past
year.” several times to access the performance of each system. We run the system 5 times in
both Docker and Edera and use the average performance to compare the systems. Note that due
to the non deterministic nature of agentic systems, there was some variance in the runtimes for
each system. As such these numbers should be taken as a sample to understand the performance
characteristics of each system, rather than as the actual expected runtime.

The table below shows performance numbers for each system overall, in addition to specific
measurements of individual agents and operations. These measurements were taken by
orchestrating the agents so they provide timing information. In the table, we show the total
runtime of each agent (in bold), in addition to the runtime of operations like the RAG database
lookup or the MCP query. The overall supervisor runtime shows the runtime for the system end-
to-end. All data is in seconds.

Overall, Edera performed slightly faster than Docker. All timings were similar between the two
implementations, with the MCP agent adding the most to the performance difference. We
speculate that Edera’s networking may contribute to this performance difference.



Performant Isolation for Agentic AI

Usability

We next compare the usability of each

implementation. We start with a quantitative Python loc
assessment of the configuration complexity,
then discuss some qualitative usability measures. Supervisor: 58
For the configuration complexity we count the CVE question agent: 43
lines of code for the code and configurations
involved in our implementations, ignoring RAG question agent: 41
dependencies for simplicity.

MCP agent: 49
Both implementations use the same Docker
containers for the agents. We count the lines of MCP server: 26
the python code in these containers, shown
below. The RAG agent has the most, partly due to RAG agent: 93
the code needed to store objects in the RAG
database. The MCP server has the least as it is a Report agent: 43
very minimal implementation and heavily relies on
the FastMCP library. Total 353

The Docker compose file has 76 lines of code, plus 21 lines in the additional openai
compose file used to separate the API token. This totals to 97 lines of configuration
for the Docker implementation.

The Edera implementation configuration consists of a service and deployment for
each agent. The services are all almost identical at 13 lines each, and the
deployments have an average of 34 lines. With 7 agents, this comes to a total of
332 lines of configuration.

So from these numbers, Edera requires more configuration than Docker, though a
lot of that configuration is duplicated between the agents.

N o o T — —————— ——— —




Performant Isolation for Agentic AI

We then move on to more qualitative analysis about the different usability between these
implementations. As the Edera implementation is basically a Kubernetes implementation with an
added line that says “runtimeClassName: edera”, a lot of this comes down to the difference
between Docker and Kubernetes. That said, the main qualitative takeaways from building these
implementations were:

The Docker setup had a bit less boilerplate because it just ran the containers

01 rather than setting up a service and deployment for each one. The Kubernetes
setup is probably more production-ready, but for this small experiment
Docker’s flexibility was nice.

The Edera debugging tooling was handy. Edera adds some additional

o2 debugging capabilities on top of Kubernetes, so when something wasn’t
working | could look at “protect zone logs” and inspect workloads directly from
the zones they are running in. This helped me find some bugs that weren’t
obvious from a “kubectl describe pod”. This “protect zone log™ feature was a
significant, Edera-specific differentiator, providing deep, hypervisor-level
introspection that is impossible with standard “kubectl” commands.

Updating images took less steps in Docker. Because | was using Docker

03 images, the Compose setup built them for me whenever they changed, while |
had to upload them to a registry to get the changes reflected in the Kubernetes
setup. This difference would disappear in a Cl/CD-driven production
environment which always pushes to a registry and is standard practice for
both Docker and Kubernetes deployments.

The Docker setup required healthchecks to make sure everything ran in the
04 correct order (because the supervisor would just crash if the agent servers

weren’t up yet). In Kubernetes | just deployed the supervisor last. This could

maybe be fixed with separate compose files in a more complex deployment.

So in summary, the Edera implementation required more lines of configuration, though most of that

was Kubernetes boilerplate. And the usability mostly came down to that of Docker vs Kubernetes.
Though there was some added debugging directly through Edera.




Performant Isolation for Agentic AI

Conclusion

Conclusion

Agentic Al creates new, severe security risks
from remote code execution to data exfiltration.
Shared-kernel containers are not designed to
solve these problems. Edera provides true,
hypervisor-enforced isolation for each agent,
turning “logical separation” into a hard security
boundary through the use of zones. This contains
the blast radius of any single compromised agent.

Our research demonstrates that these security
gains come without a performance penalty for
complex systems of Al Agents. In our realistic,
multi-agent architecture, we show that the
Edera-based deployment was ~16 % faster than
the Docker Compose equivalent. For any
organization deploying agentic Al in production,
Edera's hardened runtime is the clear choice for
achieving performant, scalable, and truly secure
isolation without platform re-architecture.



mailto:contact@edera.dev

