
Performant
Isolation for
Agentic AI
A Comparative Analysis Proving Edera’s Hardened

Runtime is Both More Secure and Faster than

Docker for AI Workloads

Executive SummaryPerformant Isolation for Agentic AI

AI agents can be a powerful tool for handling complex,

multi-stage processes. But what happens when the

agent misbehaves? In this paper we propose combining

design patterns for multi-stage AI agents with Edera to

achieve strong security guarantees with minimal limits to

the agent’s capabilities. The design patterns provide

best practices for how agents interact, and Edera

provides strong isolation. So each single-purpose agent

can be in its own isolated environment, then securely

combined into a powerful application.

We create an example architecture and implementation

to demonstrate that running agents in Edera can actually

be faster than running them in Docker.

Executive Summary

Introduction

AI agents have proven to be useful at a wide

range of tasks from triaging email to searching

the internet to handling customer inquiries. But

running agents in traditional, shared-kernel

container environments comes with risks. If the

agent is able to access your filesystem, what if

exfiltrates API keys from the host environment? If

it’s able to read logs to respond to customer

questions, can it also read sensitive information

and return that to the customer?

We want to allow agents to have enough

autonomy to complete complex tasks, but prevent

them from wreaking havoc on our systems. A lot

of work has been done to make agents more

accurate through carefully crafted prompts and

splitting large tasks into smaller ones. And

researchers have come up with secure design

patterns to combine these agents. These design

patterns use set interfaces or careful control flow

to ensure that a prompt injection can’t spread

from one agent to the entire system. What we

focus on in this work is where these agents are

actually running.

When agents are run directly on your machine

they can get access to everything else running

on your machine, so we propose isolating agents

with Edera. These agents, which can be split into

separate agents for each task following existing

best practices, can run in isolated Edera zones.

Input and output can be passed between the

agents, but each agent only has access to data

that’s directly passed in. If the agent has to

operate on files, it will operate only on files

passed into the zone, and any changes will be

made only after the files are passed back as

output. This use of Edera can be combined with

agent design patterns designed for security, like

using the operator pattern and pre-defining steps

for each agent.

In this paper, we look at the feasibility of running

complex agentic systems in Edera. We create a

sample architecture that uses tools like model

context protocol (MCP) and retrieval augmented

generation (RAG) with a supervisor model to

determine if agents can be run in isolated zones,

how hard this is to set up, and what the

performance impact is. We run the agents in both

Docker and Edera to compare the performance

and usability of each setup.

Introduction

Performant Isolation for Agentic AI

Edera is a hardened runtime for containers that provides isolation to workloads

through the use of zones. Zones are similar to the guest operating system in a

MicroVM, providing a minimal workspace for applications. Zones are managed by

Edera’s Xen-based type 1 hypervisor. By running workloads in zones, they have a

reduced attack surface and no shared operating system with other workloads on

the system. Edera acts as a Kubernetes runtime, making it compatible with

existing Kubernetes applications. This compatibility allows existing applications to

gain isolation without sacrificing their existing Kubernetes-based orchestration or

CI/CD pipelines. For more information about Edera, see our paper.

Edera

Background

A lot of work has been done on the security of AI agents. We especially want to

call out work on secure design patterns for agents that this work built on.

IsolateGPT proposes that AI agents communicate through set interfaces. This

allows for user screening of inter-app communication and setting the context for

each agent. Beurer-Kellner et. al. propose a series of design patterns for AI agents

that reduce the risk of prompt injection. These design patterns limit the abilities of

agents, which limits these patterns to single-purpose agents where the designer

has some knowledge of what the agent will need access to. In this work we utilize

the supervisor pattern, with a deterministic supervisor inspired by these design

patterns from the literature.

The agent design patterns discussed provide application-level security. Our work

adds a crucial, missing layer: infrastructure-level isolation. Edera ensures that

even if an application-level control fails (e.g., via a novel zero-day prompt

injection), the blast radius is contained to a single, powerless zone.

AI Agent Design Patterns

BackgroundPerformant Isolation for Agentic AI

https://arxiv.org/pdf/2501.04580
https://arxiv.org/pdf/2501.04580
https://arxiv.org/pdf/2501.04580
http://arxiv.org/abs/2403.04960
http://arxiv.org/abs/2506.08837
http://arxiv.org/abs/2506.08837

We designed a sample agent architecture to put

the idea of agent isolation into practice. The goal

is to see how isolation works in practice, and to

observe the performance for different types of AI

operations including the use of knowledge bases

and MCP servers. Each agent in this architecture

can be put in its own Docker container or Edera

zone, with networking enabling communication

between the agents. The architecture is

summarized in the diagram below.

The agents in this architecture write a report in

answer to a question about container isolation.

Each agent is given a small task, with the

supervisor orchestrating calls to the other agents.

For this experiment, we used a deterministic, non-

AI supervisor. The supervisor passes inputs

between the agents, but does not read this data

itself, meaning it is safe from prompt injection by

the other agents. While this supervisor model

demonstrates how isolated agents can be

combined with other agentic best practices, the

isolation mechanisms would work similarly with an

agentic supervisor or other agent architecture.

ArchitecturePerformant Isolation for Agentic AI

The supervisor first gathers data about CVEs

related to the input question from an MCP server.

It calls a CVE question agent which generates a

relevant question about CVEs, then passes this

question to a CVE agent. The CVE agent

responds to the question with access to a search

engine MCP server. This MCP server is able to

read the top Google results for a query. The CVE

agent creates an answer to the question and

sends this back to the supervisor.

The supervisor then looks for relevant

information from a knowledge base. This

knowledge base is a RAG database that uses

ChromaDB and is seeded with information about

container isolation from Edera’s blog. Similar to

the above, the supervisor first asks the blog

question agent for a relevant query for the

knowledge base, then asks the RAG agent for a

response to that query. This response is sent

back to the supervisor.

Finally, the answers from both the CVE agent

and the RAG agent are sent to a report writing

agent to generate the final report.

Architecture

Question

Supervisor
(Deterministic)

MCP Server

CVE

Question Agent
CVE Agent

Edera Blog

Question Agent

Report

Writing Agent

Edera Blog

Rag Agent

RAG Database

Edera Zone

Implementation
We implemented the above architecture in both Docker and Edera to compare the

performance and security of each. The Docker implementation uses a Docker Compose file to

build and deploy all of the agents. The Edera implementation translates this Compose file into

Kubernetes yaml with the Edera runtime class. Docker and Kubernetes (with the Edera cri)

provide the networking for the agents to communicate. The source code for both

implementations is available here.

The agents are written in python using LangGraph and use the OpenAI API. They are packaged

as Docker containers in order to run in both implementations. In Docker each agent is a Docker

container, and in Edera each agent is a Kubernetes container inside a zone.

Arrow Color = Identical Content

Pseudocode:

Q1 = CVE_question_agent(question)

R1 = CVE_agent(Q1)

Q2 = Edera_blog_question_agent(question)

R2 = Edera_blog_RAG_agent(Q2)

R3 = report_writing_agent(question, R1, R2)

ImplementationPerformant Isolation for Agentic AI

Key:

https://github.com/edera-dev/Research/tree/main
https://github.com/edera-dev/Research/tree/main

Security ValidationPerformant Isolation for Agentic AI

Next, let’s compare the security between the

Docker and Edera setups, as well as comparing to

a baseline of running all agents in the same

application. But before we do that, let’s look at our

threat model and what we’re hoping to gain from

this security,

We assume that an attacker can perform prompt

injection in the initial question sent to our system.

Specifically, they can input arbitrary text into this

input. With this access, the attacker will try to

perform a malicious action through the agent such

as alter the file system, alter permissions, or

return malicious output. Their end goal is to

compromise the host system or alter agent

resources like the RAG database.

We consider non-malicious agent actions to be

out of scope. For example if the attacker gets the

agent to write a report about dogs, this is not

considered a successful attack.

So considering this goal, how do our different

agent environments compare?

Without any containerization, all agents are

running on the host system directly. So a

malicious agent, or one under the influence of a

prompt injection, could directly impact the system.

For example, the agent could add malicious

data to the RAG database or exfiltrate

sensitive data like OpenAI API keys.

By putting agents in separate Docker

containers, we run them inside containers

rather than directly on the host system. These

containers prevent a malicious agent from

viewing processes running in other agents or

the host system, and provide some resource

separation. But containers still share a host file

system, and we have seen that all it takes is a

single vulnerability in the Linux kernel to allow

containers to access data in other containers

or on the host machine.

Adding Edera zones around containers adds a

security boundary to the containers. Now each

agent has its own operating system, and

cannot access any data from other zones or

the host system. This means that even if a

prompt injection convinces an agent to behave

badly, it can only compromise its own zone

rather than the entire system.

So in summary, containerizing agents provides

some logical separation between them and the

host system. Adding Edera turns this into a

security boundary.

Security
Validation

Benchmarks

Docker Edera

O
ve
ra

ll
S
up

er
vi
so
r R
un
tim

e

R
A
G

 A
gent

R
A
G

 D
B
 L

ooku
p

M
C
P A

gent

M
C
P T

ool L
oad

M
C
P Q

ue
ry

M
C
P S

er
ve
r

R
A
G

 Q
ue
st

io
n A

gent

M
C
P Q

ue
st

io
n A

gent

R
ep

or
t A

gent
0

5

10

15

20

25

30

Next, we compare the performance and usability of agents in Docker and Edera.

We send the supervisor the question “Tell me about container escape vulnerabilities from the past

year.” several times to access the performance of each system. We run the system 5 times in

both Docker and Edera and use the average performance to compare the systems. Note that due

to the non deterministic nature of agentic systems, there was some variance in the runtimes for

each system. As such these numbers should be taken as a sample to understand the performance

characteristics of each system, rather than as the actual expected runtime.

The table below shows performance numbers for each system overall, in addition to specific

measurements of individual agents and operations. These measurements were taken by

orchestrating the agents so they provide timing information. In the table, we show the total

runtime of each agent (in bold), in addition to the runtime of operations like the RAG database

lookup or the MCP query. The overall supervisor runtime shows the runtime for the system end-

to-end. All data is in seconds.

Overall, Edera performed slightly faster than Docker. All timings were similar between the two

implementations, with the MCP agent adding the most to the performance difference. We

speculate that Edera’s networking may contribute to this performance difference.

Benchmarks

Performance

Performant Isolation for Agentic AI

Benchmarks

Python loc

Supervisor: 58

CVE question agent: 43

RAG question agent: 41

MCP agent: 49

MCP server: 26

RAG agent: 93

Report agent: 43

Total 353

We next compare the usability of each

implementation. We start with a quantitative

assessment of the configuration complexity,

then discuss some qualitative usability measures.

For the configuration complexity we count the

lines of code for the code and configurations

involved in our implementations, ignoring

dependencies for simplicity.

Both implementations use the same Docker

containers for the agents. We count the lines of

the python code in these containers, shown

below. The RAG agent has the most, partly due to

the code needed to store objects in the RAG

database. The MCP server has the least as it is a

very minimal implementation and heavily relies on

the FastMCP library.

Usability

The Docker compose file has 76 lines of code, plus 21 lines in the additional openai

compose file used to separate the API token. This totals to 97 lines of configuration

for the Docker implementation.

The Edera implementation configuration consists of a service and deployment for

each agent. The services are all almost identical at 13 lines each, and the

deployments have an average of 34 lines. With 7 agents, this comes to a total of

332 lines of configuration.

So from these numbers, Edera requires more configuration than Docker, though a

lot of that configuration is duplicated between the agents.

Performant Isolation for Agentic AI

Benchmarks

01

02

03

04

We then move on to more qualitative analysis about the different usability between these

implementations. As the Edera implementation is basically a Kubernetes implementation with an

added line that says “runtimeClassName: edera”, a lot of this comes down to the difference

between Docker and Kubernetes. That said, the main qualitative takeaways from building these

implementations were:

The Docker setup had a bit less boilerplate because it just ran the containers

rather than setting up a service and deployment for each one. The Kubernetes

setup is probably more production-ready, but for this small experiment

Docker’s flexibility was nice.

Updating images took less steps in Docker. Because I was using Docker

images, the Compose setup built them for me whenever they changed, while I

had to upload them to a registry to get the changes reflected in the Kubernetes

setup. This difference would disappear in a CI/CD-driven production

environment which always pushes to a registry and is standard practice for

both Docker and Kubernetes deployments.

The Docker setup required healthchecks to make sure everything ran in the

correct order (because the supervisor would just crash if the agent servers

weren’t up yet). In Kubernetes I just deployed the supervisor last. This could

maybe be fixed with separate compose files in a more complex deployment.

The Edera debugging tooling was handy. Edera adds some additional

debugging capabilities on top of Kubernetes, so when something wasn’t

working I could look at “protect zone logs” and inspect workloads directly from

the zones they are running in. This helped me find some bugs that weren’t

obvious from a “kubectl describe pod”. This “protect zone log”' feature was a

significant, Edera-specific differentiator, providing deep, hypervisor-level

introspection that is impossible with standard “kubectl” commands.

So in summary, the Edera implementation required more lines of configuration, though most of that

was Kubernetes boilerplate. And the usability mostly came down to that of Docker vs Kubernetes.

Though there was some added debugging directly through Edera.

Performant Isolation for Agentic AI

Conclusion

Conclusion
Agentic AI creates new, severe security risks

from remote code execution to data exfiltration.

Shared-kernel containers are not designed to

solve these problems. Edera provides true,

hypervisor-enforced isolation for each agent,

turning “logical separation” into a hard security

boundary through the use of zones. This contains

the blast radius of any single compromised agent.

Our research demonstrates that these security

gains come without a performance penalty for

complex systems of AI Agents. In our realistic,

multi-agent architecture, we show that the

Edera-based deployment was ~16% faster than

the Docker Compose equivalent. For any

organization deploying agentic AI in production,

Edera's hardened runtime is the clear choice for

achieving performant, scalable, and truly secure

isolation without platform re-architecture.

Get in Touch

Performant Isolation for Agentic AI

mailto:contact@edera.dev

